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New boundary conditions for integrable lattices

V B Kuznetsovi§|], M F Jgrgensen} and P L Christiansen}

1 Faculteit voor Wiskunde en Informatica, Universiteit van Amsterdam, Plantage Muidergracht
24, 1018 TV Amsterdam, The Netherlands

1 Institute of Mathematical Modeliing, Technical University of Denmark, DK-2800, Lyngby,
Denmark

Received 28 march 1995, in final form 18 May 1995

Abstract. New boundary condittons for classical integrable nonlinear lattices of the X X X type,
such as the Heisenberg chain and the Toda lattice, are presented. These integrable extensions
are formulated in terms of a generic XX X Heisenberg magnet interacting with two additional
spins at each end of the chain. The construction uses the most general rank-1 ansatz for the
2% 2 L-operator satisfying the refiection equation algebra with rational r-matrix, The associated
quadratic algebra is shown to be that of dynamical symmetry for the A; and BC, Calogero—
Moser problems. Other physical realizations of our quadratic algebra are also considered.

1. Introduction

Many of the Liouville integrable lattices, for instance the Toda lattice and the Heisenberg
chain, remain integrable when imposing some boundary conditions other than the open or
periodic ones. Usually it comresponds to switching from the A,_; classical raot system to
the other ones (B,, C,, D,. BC,, etc) associated with an integrable lattice [1-3]. It was
an idea of Sklyanin [1] (see also [4]) to describe all such possible boundary conditions in
terms of the representations of a new algebra

R — TP@RE + TP ) = TP@W)R@u + )TV )R — v) (1.1)

which was afterwards called the reflection eguation algebra (see for instance [5]). We
prefer to give it another name the QISM I algebra (see [2, 6, 7, 8]), where QISM stands for the
quantum inverse scattering method and 1I symbolizes the difference between it and the grsas
algebra, which is simply the familiar algebra given by the quadratic relation [5,9, 10, 11]

R — TP TPw) = TOWTOWRw — v). (1.2)

There are actually too many names for these algebras, and none of themn is becoming
standard; that is why we insist on cur own choices, the QISM I and II algebras. These names
are short and also quite characteristic. We should also mention [12] where a different version
of the reflection equation (1.1) was considered.

In terms of the integrable models the representations of the QISM I algebra (1.2) provide
us with integrable lattices (through the co-multiplication) while the representations of the
QISM II algebra (1.1) describe the possible boundary conditions for such lattices. In this paper
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we use the new representation of the QISM 1l algebra found recently in [8] to obtain some
new boundary terms for the known integrable lattices. These new models are generically
formulated in terms of the X XX Heisenberg magnet interacting with two additional spins
on each end. We also consider the degenerate cases given by the corresponding contraction
procedure. We would like to stress that our results give for the moment the most general
boundary terms for the Heisenberg magnet (expressed in terms of two additional spins on
each end) and specialization will give already known boundary conditions [1,2] coming
from the scalar or rank-0 solutions of the QISM If algebra. Describing the situation in rather
more technical terms, we can say that we are classifying all boundary conditions coming
from the most general rank-]1 representations of the QISM II algebra in the XXX case. All
results in this paper are given for the Poisson algebra. The quantization is straightforward
and will be published elsewhere.

2. Rank-1 representations of the QISM II algebra

In the classical limit the QISM I algebra (1.1) becomes the following Poisson algebra [1]:
{TDw), TP} = Ir@w — v), TO@WTP @) + TP )r (u + v)T@ ()
—T® @y + )T ) v R))

where 7Pw) = T} @ I, T®(w) = I @ T(v). Here @ denotes the usual tensor product
and [ is the 2 x 2 identity matrix. The T (&) is the 2 x 2 monodromy matrix depending on
the complex spectral parameter #. The 4 x 4 matrix r(u) will, in this paper, be given by

10070
= -1100 10 22
=T lo100 @2)
0 0 01
This is the rational case, which corresponds to the X XX model [3,9].
Let T(x) be of the following form [7, 8):
A(n) Bu)
= 23
T ( Cw D) ) @3
with
]
A) =ou® + Aju+ Ag+ - D{u) = —A(~u) (2.4)
Blu)y=pu"+By  Cu)=yu*+C. (2.5)

Here &, 8, ¥, and § are scalars, while A;, Ag, By, and Cy are generators of some algebra.
The T(u) (2.3)~(2.5) satisfies the following symmetry property:

T(—u) ~ T (w). (2.6)

Inserting this ansatz for T (1) into the Poisson algebra (2.1) leads to the following quadratic
Poisson algebra .4 for the generators A;, Ag, By, and Cy:

{Ao, A1} = BCo— ¥ Bo {Bo, Ao} =24, By — 283 @7
{Bo, A1} = 20By — 284 {Co, Ao} = —2A,Cp + 28 (2.8)
{Co, A;} = 2}’A0 - 20!Cu {Co, Bo} B 4A1A0 — 40 . (29)
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The determinant of the monodromy matrix T (i) is the generating function for the centre of
the QISM Il algebra (2.1). For the ansatz (2.4}(2.5)

52

det T (u) = —(o® + By u* + Qo + Qo + = (2.10)
with

Qy = A2 —20A)~ BCy— ¥ By Qo =28A; ~ A} — BpCp.  (2.11)
Hence (2.11) gives two Casimir elements for the algebra (2.7)-(2.9). Notice here that we
term the ansatz (2.4)~(2.5) the ‘rank-1 representation’, since we have got the Poisson algebra
(2.73-(2.9) with six generators out of it, which has two Casimir elements. So the rank of
the algebra is equal to 1. If one takes higher order polynomials in the expressions for A(u),

B(w), C(u), D(u), then one arrives at the Poisson algebras of a higher rank.
The QISM H algebra (2.1) with the r-matrix (2.2) admits the following scalar soluticn [1,

2T
[ a+ dfu b
K@) = ( . —atd/u ) (2.12)

where a, b, ¢, and d are complex constants. This is just a special case of (2.3)~(2.5) with
==y =A; =0. Then Ay, By, and C all commute. We may now combine the two
solutions X (1) and T (u) of the QISM II algebra and define

t(u) = e K (—u)T (1) . (2.13)

Note that Z : T () = T*(—u) is an automorphism of the algebra (2.1) with the r-matrix
(2.2). It is a property of the QISM II algebra [1] that

{t(), t(v)} =0. 2.14)
Hence the () (2.13) is the generating function for the integrals of motion of an associated
integrable system. For our special choices of K (u) and T (1) we get

t(1) = (20a + Bb + yeyud + H — Zd% ' (2.15)

where
H =2aA0+ 6By +cCo—2dA;. (2.16)

The Hamiltonian (2.16) defines a completely integrable system, since it is effectively one
dimensional. (Subtract two centre elements (2.11) from four generators and divide by two
to see that the algebra (2.7}~(2.9) is of one degree of freedom.) In the appendix we show
how we may eliminate the first term in the Hamiltonian (2.16) by using the automorphisms
of the quadratic algebra .A. The result is

H =bBy +&Co — 2d A, » .17)
where the new coefficients 5 and & are related to @, b, and ¢ through
a* + be = bé 20ta + Bb + ye = b+ y¢E. (2.18)

Any Hamiltonian that is a function of A, Ag, By, and Cy will be completely integrable.
However, for this special case, an arbitrary linear combination, we have formulated the
problem using the QISM I algebra. It is then possible to apply the method of separation
of variables, which will be shown in section 4. We now give a physical realization of the
quadratic algebra (2.7)—(2.9).



4642 V B Kuznetsov et al
3. The o(4) generalized Lagrange top

The algebra (2.7)<(2.9) may be embedded into the Z/(0(4)) Lie algebra with the six
generators J; and x;, i = 1,2, 3, and the Poisson brackets

{Ji, B} = €t {12 %7} = €2 {xi, %} = €. (3.1)
The U(0(4)) algebra has the two Casimir elements
Ci=z+J2 CG==z-J. (3.2)

The homomorphism between the 24 (0(4)} algebra with relations (3.1) and the rank-1 QISM II
algebra (2.7)-(2.9) is given by the following formulae [8]:

AQ = x1J7 — x2J4 Bo = ——x12 - x% - Js.z C[] = Jz A1 = X3 (33)

where the scalars ¢, B, and y appearing in (2.4)(2.5) are without loss of generality chosen
to be

=0 Bg=-1 y=1 - - - (G4
with & being equal to
§=0C0. (3.5)

Using equations (2.10),(2.11) we may write the centre of the algebra in terms of the o(4)
variables

Qu=Ci+C T Q; =C + J2. (3.6

Notice that from this it follows that J; commutes with all of A, Ag, By, and Cy. It is
a simple matter to verify equations (2.7)-(2.9) from the definitions (3.3) and (3.1). The
integrable Hamiltonian (2.17) becomes

= —bQy + (b + BT %+ bx? ~ 2dx; 3.7

with J3 as the additional conserved quantity. For the particular values of @, 8, and  in (3.4)
it can be shown that b and & are always real when a, b, and ¢ are. The Hamiltonian (3.7)
corresponds to an o(4) generalized Lagrange top [3].

In the special case a® 4 8y = O, the algebra A is degenerate. We then have the
following homomorphism to I{(e(3)) [8]:

Ag = x1J2 — X2y By = —x¥—x2 Co=J? Al =x3 (3.8)

where we have put without loss of generality that « = 8 = 0 and y = 1 with § being as
in (3.5). The algebra generators J; and x; satisfy here the Poisson brackets like in (3.1)
where the last bracket is equal zero (according to the contraction procedure from o{4) to
e(3)). The first Casimir element C; = 2. The Hamiltonian (3.7) for this case corresponds
to the Lagrange top in a nonlinear gravity field {3].

4, Separation of variables

We now return to the Hamiltonian (2.16) with the Poisson brackets (2.7)-(2.9) and show how
this system may be integrated by the general method of separation of variables applicable
to the QISM Il algebra. This method was first applied by Sklyanin in [11,13] to the
representations of the QISM I algebra, See also [2,6] where the separation of variables
was applied for the first time to the QISM II algebra under circumstances close to the ones
we have in the present paper.
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To do this it is necessary first to apply a similarity transformation to the matrices X (1)
and T(x) in order to make K (x) triangular. We define the matrix V as

a+w 0
V=( b 1) 4.1

where a and b are the parameters in K (x) defined by (2.12) and w? = a® + be. Then we
introduce K(u) and T(u) as

Aw) B ) @2)

K@) =V R@vy T@y=v'Twv=_ . 8
@) =V'E@V™) (@) @) ( G —Aiwn
The matrices E{u) and T () are of the same form as K (u) and T(x), respectively. The
K (1) now looks like

d
. wt - 0 a-+ b
Rw) = . . = P @.3)
—wt §  —d+-
u

d -
u

a+w
while we have the following relations between the entries of T(x) and T (u):

. b2
gb G b 5= oba_ P
a+w atw a-+w

=0

+{a + w)y (4.4)
and
' _ 2bAg — BBy + &

a+w 4-3)

A= Ao —bgo By=1(a+ W)EO Cy

where A; and § are not changed. Since det f’(u) = detT(z) we have Q2 = G and
Qg = Qp. Furthermore, K (1) and T(x) also satisfy the QiSM II algebra, while ¢(x) defined
in (2.13) is unaltered. Hence, these mattices generate the same integrable system as before.
It is because of the triangular form of K (u) that we get

t(u) = B(A () + A(—u)) — ii-(A"(u) — A(—u) +é€w). (4.6)
Now let #; be a zero of C(w), ie.

Clup) =0 .7
and define

A o=—A(—u) A7 = Auy). (4.8)
‘We may easily evaluate

APAT = —AQun)A(—u;) = det T(uy) = Aduy) 4.9)

where A(u) = det T (&) is given by (2.10), and from (4.6) we get
d
t(u1) = wry — AT) — —O7 + 5. (4.10)
1

This is simply the separation equation for the separation variables u,, ki':. Because T(x)
satisfies the QISM II algebra we have the important Poisson brackets between the new
variables u, and )ff (see [2,6]) -

AT =22 A =-Aw). 4.11)
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From (4.9) and (4.11) it follows that we may put

A = Adu) et {un, 1} =1. (4.12)
Inserting (4.12) into (4.10) and using (2.15) gives

H = -2./A(u) (w sinh p; + -;icosh pl) — RQua+ gb+vye) u% +2d% . {4.13)
1 i

We have thus formulated the problem as an one-dimensional system with the
Hamiltonian (4.13) in terms of the canonical coordinates u#; and p;. The equation of
motion looks like

4y = fu, H} (4.14)
from which we have
dz
()% = t(u1)* — 4A %) (;3 - wz) . 4.13)
1

After the substitution v) = u? the problem can be integrated in terms of elliptic functions.
The transformation from (A1, Ao, Bo, Cg) t0 (i1, p1) is given by equations (2.16), (4.7),
and (4.13). To get back we first write A(x) and C(u) in terms of uy and p; through the
Lagrange interpolation using the data

ClEu) =0 A(duy) =T (4.16)
and the leading parameters &, ,5, ¥, and 8. This gives

Clu) = 5(® —ud) (4.17)

- T 22 _
Aw) =862 —uty+ 21 Sa Sk iV S
i u 1

1

AT 4.18)
Equating powers of u and using (4.12) then gives

" . —— ; § | Al
CO e _Yu?' AO = —Q'ul A(ul) sinh F24! Al =——+ _u_ “ cosh 21 (419)

i !

=

To get By we insert B(u) = Bu? + By mto —AWA(—w) — Bu)Cw) = Aw) and equate
powers of u. This gives

By = }I, (2 p + % + &%u} + 5(‘1 Y sinh? p; + 2/ A1) (a:smhpl — %coshpl))
(4.20)

Alternatively, By may be restored from the Poisson bracket
{Ao, A1} = BCo~7Bo. 4.21)

We may finally get Aj, Ag, Bo, and Cq in terms of u1, p1, Qo, and Q» by using (4.5).
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5. Two interacting o(4) tops

We now generalize the results of sections 2 and 3 to the case of not just one, but two o{4)
Lagrange tops interacting with each other. This is done by replacing in (2.13) X (u) with
T(u) where T(u) is of the same form as T (x), but with a different choice of &, S, 7, 5,
Ay, Ag, By, and Cp. Becanse the QISM I algebra (2.1) is closed under the action of any
similarity transformation, we may write #(1) as

tw) = T (—w)VT(w)V! (5.1}

where V is any matrix with determinant 1, while T (#)} is given by (2.3)(2.5) and (3.3)(3.3)
and similarly for 7(x). Putting

Y (5.2)
“\e d )

with ad — bc = 1 leads to the following integrable system:
268

tw) = (@* + B* + F + dPu* — Hu? -G-— (5.3)
where
= —2ab + cd) Ay + (@* + 2 By — (6% + DTy
—2(ac+ bd)Ag + (@ + b By — (¢ + dHCo + 24\ 4 (5.4)
= —2(1+2bc)AgAg — a*By By — d>CoCo + 2a(cBoAg + bAgBy)
+5%CoBo + ¢*ByCo — 24(bCoAn + cAaCo) + 284, + 54)). (5.5)

If we regard the H (5.4) as the Hamiltonian then we see that the interaction between the
two systems is through the term A;A;. We may use the autemorphisms of the quadratic
algebra A to eliminate the terms in H with Ag and Ao. Using equations (2.18) we get the
foliowing Hamiltonian:

H = A(Cy = Bo) + 27 (Co — Bo) + 24,4, (5.6)

where A 1s the single non-trivial parameter in the Hamiltonian satisfying —(A + A D=
at+ b+ + d2. The second conserved quantity is

= 2(A0Ao+ 841 +841) — ACyBy — 271 BoCo. (5.7)
Applying the homomorphism (3.3) gives the final result:
H = J?%-+ &%+ (xscosh@ + Fasinh6)°. (5.8)

Here A = tanh@, while constant additive terms and multiplicative factors have been
neglected. This is a new integrable system which we call twe interacting o(4) Lagrange
tops. ‘We remark that the number of degrees of freedom is 4 and there are two simple
integrals, namely: J; and J3. The fourth integral & (5.7) is of degree 4 in the J; and x;.
No separation of variables is known for this system or in general for any integrable system
given by (5.1) in the case when both T'(z) and T(u) are non-scalar.

The Hamiltonian (5.8) contains interesting subcases. We may easily change the real
form speaking about two interacting systems on the algebras, for instance, 0(2, 2) §o(2, 2),
a(3,1) & o(4) and so on. The further possibility is the contraction giving the cases like:
e(3) @ o(4), e(3) @ o3, 1), e(3) & e(3) etc. Finally, the two o(4} algebras have two o(3)
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subalgebras by putting (x;, B2, x3) = (51, 52, 53) and similarly (%, B, 53) = (6, =11, ).
Then

H=Ms3+2)+ 277 + 15 + 25313 (5.9)
G = 1"V s1ty — Aso)?. (5.10)

This is 2 special (but non-trivial, one-parameter) case of the general (two parameter) o(4)
Manakov top [2,3].

6. Further realizations

In this section we consider other homomorphisms of the specialized quadratic algebra A
determined by the condition >+ 8y = 0. Without loss of generality we may pute = 8 =0
and ¥ = 1. Applying the techniques of the section 5 leads to the following system:

H = Cy+ Co+ 21A1 A, 6.1
G = CoCo + 2A(8A; + 341 — ApAg) + A2BoBy 6.2)

with the single parameter A. We have the following homomorphism of the specialized
algebra .4 into U (sL(2) & 5I(2)):

Ap = 4(s3t_ — Bi3s..) By =—16¢_5_ (6.3)
Co = (54 +£1)(s~ +2.) — (53 + 13)° Ay =20 —s) (6.4)
§=2(_+1t)C—C). (6.5)

Here C; and C, are the Casimir elements of the two 5I(2) algebras
Co = s32 — 545 C = r32 — sl (6.6}
and the Poisson brackets for the generators are given by
{s_,53} =s_ {s_ 54} =253 {s3, 84} = 54 (6.7)
{t_, )=t {t_. 11} =28, {1} =1.. (6.8)

We may realize the pair of 5I(2) algebras in terms of the canonical variables (x, ¥, px, py)
via the following homomorphism ({x, p,} = 1 etc):

2 2
= _B_2 :
53 5 5. = 5 S = T (6.9)
2 2
Py =Y B _Im
ty = 5 r__2 .= 5 7 {6.10)

where [ and m are the values of C; and C,, respectively. Inserting these relations in (6.1)
gives the following Hamiltonian:

H= %(Ipy - J’Px)2 + %(iﬁy - 55’1—)2 + 24\-(-752 - yz)(fz - 52)

; s e L,
—(x+ y) (?2 + %) — @+ (ﬁ + %) : 6.11)



New boundary conditions for integrable latiices 4647

In polar coordinates x = rcos@, y =rsinf, ¥ = Fcos 8, ¥ = Fsind this system becomes

. =2 - m ! ]

H=18+18 +2r*%*cos20cos26 — - - = — =

397 gt AT €08 cos?d  sin’@ cos?@  sin®d
(6.12)

L L - ~ 22
G=1% (99 — 2052 c0s 28 — B) + 202 cos 26 + e))
1 2 ] 7 65\
. m 5 )

J-[1g2_ .__) Lg o |- —

(4 cos?f  sin’@ (4 cos?@  sin*4 4
+25r272 ((m —eos28 + (i — Dcos 26) . (6.13)

Regarding H, equation (6.12) as the Hamiltonian, we can see that we have a system of two
particles situated in some singular field and interacting with each other through the product
of cosines. This can be interpreted as two interacting pendulas. This is a new integrable
system. The r? and 7 ? are constants, being the level values of two simple integrals: s+
and 5_ +7_. The fourth integral G, equation (6.13), is of degree 4 in terms of & and §. We
would like to call this system the D, Toda lattice with singular terms. Without the singular
terms the system is easily integrated by introducing 6, = #£6. However, no integration of
the general system is yet known. In what follows we will give two more physical examples
connected with some realizations of the specialized algebra .A: namely, the so-called A,
and BC; rational Calogero-Moser systems [14].
The A; rational Calogero-Moser system is given by the Hamiltonian

H=3(t+p)+ {pi:x;} =8y (6.14)

with the additional conserved quantity £ = p| + p». Introduce three more variables
R=x1+x Ho = 5(p1xy + p2xa) Hy=31G7+x3). (6.15)

‘We now have the following realization of the specgialized algebra A:

Ag =4(PHy — RH) Bo=4(P*—4H) =~ Co=4(HH, - H}) (6.16)

A =2P §=0 (6.17)

again with &« = 8 = 0 and y = 1. Since Oy = 16H, H commutes with all of Ay,
By, Cy, and A). This observation corresponds to the fact that the Hamiltonian (6.14) is
superintegrable [15].

Inserting this realization in the Hamiltonian (6.1) for two ‘interacting A; Calogero—
Moser systems” leads to the following integrable system:

x? 4 x2 .
H=(x1P2—sz1)2+2 L 22+(x1p2—p2x1)2
(x1 — x2)
i+ i -
+2——~—(JEl %) + A(p1 + p2)(P1 + B2) . (6.18)

By the construction of this system, we know that its motion on the levels of two Hamiltonians
for two A, Calogero-Moser systems is equivalent to that of the system (6.12) (because both
systems give two different realizations of the same specialized algebra A).
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Consider finally the following one-parameter case of the BC; rational Calogero—Moser
system given by the Hamiltonian:

. i ) 1 /1 1 5
. w1 o1 1
H Q(Pl -;— PZ) + (x] _ x2)2 + (JC] “|“ x2)2 + 2 xlz + x% ( 9)

where « is a constant. This system may be embedded into the specialized algebra A in the
following manner:

Co= Y(HH, — HY) By = 4(N — 4HY)(N —2H?) (6.20)
Ag = {N, Cp} A= —2(N —3H? &= (k- DH? (6.21)

where Hy and H; are given by (6.15) and N is the so-called second conserved quantity [14]
({#, N} =0)

2
P 2. x+x3
+ ;2') + S(P] 2)( Pl x2)2

N p]+P2+2IC (
xl 2

g X1 %2P1 P2 (x} + x5 (P} — x3)? -i-"rszch)2

+1
(22 —x3)? (x? — x2ytxixd

(6.22)

Because the Hamiltonian H is sitting in § it commutes with all the generators and hence the
system (6.19) is superintegrable too. In this case the Hamiltonian (6,1) for *two interacting
BC» Calogero-Moser systems’ has the following form:

= (x1p2 — xap1)* + (1 f2 — F251)7 + 20x] + x)U (%1, 32, &)

12(% + FDU (Fr. %2, ) + MN — 3HH(N - 3H%) (6.23)
where
1 1 271 1
U(xy, x2, k) = : —=+=). 6.24
(x1, X2, k) T + P += (x% +x§) (6.24)

It is quite interesting to remark that the motion given by the Hamiltonian (6.23) on the fixed
levels of two integrals of motion (6.19) (one with tilde and one without tilde) is the same
as the motion given by the Hamiltonian of the D; Toda lattice (6.12). The last two results
regarding the Calogero-Moser systems were obtained by one of us in [16].

7. Two e(3) tops interacting with the 4,, Toda lattice

The next generalization we present is that of inserting the Toda lattice between the two e(3)
Lagrange tops (ses end of section 3). This is done by using the monodromy matrix for the
Toda lattice

L{u) = La(u) -+ Ly—1(x) ( (7.1)
where ‘
_ 0 exp(qr) .
Li(y) = ( expl—g) u—p ) fa:, PJ} = &;. (7.2)

The matrix L(x) (7.1) satisfies the Poisson limit of the QISM I algebra [9, 13]
{LOw), L2W)} = [r(u — v), LY@WLP (v)] (7.3)
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with the same r-matrix (2.2) as in (2.1). Now let T1(u) and Ty () be the representations
described in (3.8). It is then true that the matrix

T(u) = L) Ty(D)L™" (—1) (7.4)
also satisfies the QISM 1T algebra (2.1) [1]. Therefore the trace
tu) =t Tf (—) L) Ty ()L~ (—u) (7.5)

is a generating function for the integrals of motion for the A,_, Toda lattice interacting
with an &(3) Lagrange top at each end. The Hamiltonian for this system is as follows:
N=2 i
=z E PR+ I+ T8 - Z exp(gi+r — ;) —ePx a3 + ey, (7.6)
1-—2 i=2

The first three terms describe the kinetic energy of the system, which is a chain of particles
plus two tops at the ends of the chain. The last three terms are the potentials, the first one
being in the form of Toda-like interaction between the neighbours in the chain while the
two last terms describe an interaction of the tops with the chain. It is convenient to choose
the following representation of the specialized quadratic algebra A, Let o = 8 = 0 and
y = —1. Then (cf also [2, 6])

A) =coshg Ag = psinhg By = —sinh?g (7.7)
20[ 262
sinh®%  cosh® £

where ¢; and ¢ are arbitrary constants. The Hamiltonian (7.6) then becomes

C0=P2+

{p.gl=1 (1.8)

N -2
% Z pi - Z exp(gi+1 — g;) — €% coshg 4+ e%%-* coshgu (7.9)
i=1 i=2
5] C2 C3 [#]

- - . (7.10)
sinh? ‘121 cosh? Z sinh?® 5{2"-’ cosh? 9-2"—’

This Hamiltonian was proved to be integrable for the first time in [17]. It comresponds to
the most general Toda lattice of the type D, with four additional singular terms. Now we
have given another proof for its integrability and also shown how it appeats naturally from
the combination of the standard A,_; Toda lattice with two tops each interacting with the
corresponding edge particle of the A,_» Toda lattice.

8. Two o(4) tops interacting with the Heisenberg magnet

Let us consider the XXX Heisenberg magnet. It is given by the following constructxon
First, we introduce a chain of simple L-operators [9] (k =1,..., N)

Le(uy =1+ ﬁ (S’i S‘_c:) 8.1)

S —%
each of which satisfies the QISM I r-matrix algebra (T (x) = L;(u)) with the r-matrix (2.2)
{TOW), TP @)} =[ru — v), T"@WTP ()] (8.2)

where the s-variables have the following Poisson brackets of the s/(2) Lie algebra for any
k:

{s3, 5%} = £is* {st,57} =2is. (8.3)
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We will also use the real variables 5} and s? defined as si¥ = 5] Fis2. The L-operators (8.1)
have the following properties when conjugate and change the sign of the spectral parameter
u:

Li(-wy=Liw)  Liw) = ol uek. (8.4)

The L-operators (8.1) can be also represented in the form of the scalar produoet between
two vectors:

L)y =1+ i(sk, o) sk = (5§, 55, 5p) (8.5)

where o = (o7, 01, 03) are the standard Pauli matrices.
The determinants of the L-operators are expressed through the Casimir elements of the
sI(2) algebras:
2
detLe() =1+ o = "+ (D + ()’ ®6)

and have +ic; as degeneration points. The monodromy matrix T(x) = Ly{u)--- Li{u)
satisfies the algebra (8.2) too, while its trace

tHu) =t T (u) {t(w), ()} =0

provides us with the complete set of the integrals of motion in involution for the XXX
Heisenberg magnet. There is a well known rule [9] for writing down the local Hamiltonian
for the model. Suppose that we have the homogeneous chain, i.e. all ¢ are equal, ¢ = c.
Then one should calculate the logarithm of the generating function f(x) at the common
degenerate point of alfl the L-operators, i.e. # = ic in our case. So, the local Hamiltonian
for the XX X Heisenberg chain looks like:

N
2

Hioe = log [t(ic)* = ) log [2 + S, sk+1)] : ®.7)

k=1
Let us now proceed further to introducing the boundary conditions for the chain with the
Hamiltonian (8.7). First, we pick up a special representation of the QisM 1I algebra which
was introduced in sections 2 and 3. Suppose we have the Lie algebra so(3) @so(2, 1) given

by the following Poisson brackets for its six generators s; and #.:

{5,857} = &S (3.8)
{ti, 02} =—13 [, 8}=1 {ts, 1} =1a. (8.9)
The Casimir elements are
C=EY+ @+ 6= C=-0)l-@F+@’=r". (8.10)

The following matrix:

u(ss —13) +2i(sita — sat1) i@ + 52+ 12 + 2533

+E'ﬂq)u(sz—_m - =2i(s1t1 + 522))
= : @.11)
w2 452+ 12 + 2ty u(s3 — 1) — 2i(s18 = Sat1)
+2i(s101 + 5282)) 4 ()1

u

gives a representation of the QISM II algebra (2.1).
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Let us take the same representation with the tilde-variables 5, and . which are in direct
sum to the spins s and ¢:

{5, 55} = ey (8.12)

{h, B} =1 {.6l=14 {Bal=2. (8.13)
The Casimir elements are ,
C=GEP+GE+G) =5  C=—GP-@*+m =1 (8.14)
The following matrix T(u):

u(F — i) + 211, — HA) iw? 4+ 32 + P 4 2537,

) +Guth)E=F) —2i(ify + 5272)) |
T() = : L (8.15)
H(u? + §2 + 12 + 2553 u(83 — 13) — 21(518; —5at1)
+2i(E 5 + 520)) + Gr)@ )

[}

gives a representation of the QISM II algebra (2.1).
The generating function for the integrals of motion for the XX X Heisenberg chain with
boundary terms looks like

1) = tr T@)Ly{u) - - Li@)T@L () - Ly(w). (8.16)
The local Hamiltonian for the system has the following form:
N-1 2
Hine = log #(ic) = ; log [2 + 5o, skﬂ)]
+loglc®(s3 — 3) = (53 + 13) (s — 12) + s} (=2 + 52+ 12 + 2:313)
+255 (5121 + Sa212) + 257 (5122 — 5211}
+loglc?(§s — ) — (55 + BYE? — ) + sp(—* + & + 7+ 25)

e - e —4
-[—2512\,- (&1 + S12) + 25]3\;(311‘2 — 5it)] + log ('C—z) . 8.17

This integrable Flamiltonian describes the X X X Heisenberg chain interacting with two spins
s and ¢ at the one end of the chain and with two spins § and  at the other one. Note that in
order to get the Hermitian Hamiltonians we had to choose the non-compact se(2, 1} form
of the spins £ and #. The boundary terms in the Hamiltonian (8.17) generalize the ones
in [18], which described the influence of the external magnetic field and, in quantum case,
locked like (fortnula (53) in [18])

N1
H= Z(a,fcr,f+1 +o)a), +oioi )+ b of —bioh + c_o] —cpoy
n=1

+d-o;t —dyoif (8.18)
where bu, ¢y, and d are constants. The Hamiltonian similar to (8.18), with six boundary

terms, was proved recently to be integrable also for the generalization up to the XY Z
case [19].
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9. Discussion

It is well known (after the original work of Sklyanin [1]) that every new representation of
the reflection equation algebra, or the QISM II algebra in our terms, provides one with some
new integrable system which can be interpreted as a system described by the QISM I algebra
with some boundary terms added.

In this paper we constructed several new integrable systems which appear after imposing
boundary conditions on the known integrable lattices. We obtained the following results:
(1) two interacting o(4) tops; (ii) a new interpretation of the most general Toda lattice of
the Dy type (namely, ‘Dy = Ay + 2 tops’); (iii) the quadratic algebra .4 as a dynamical
algebra of hidden symmetries for the A; and BC, Calogero-Moser problems; (iv) the
explicit form of the “local’ Hamiltonian (8.17) for the system which describes an interaction
of the XXX Heisenberg chain with two o(4, C) tops.

We believe that it is possible to generalize our results in some ways: first, the
quantization which seems quite straightforward, and second, the g-deformation. There
is also an open problem of whether to integrate new systems or to separate variables for
them.

It is also very interesting to understand how many spins can be added to the Heisenberg
chain as some sort of boundary conditons, while still preserving the integrability property.
In the present paper we showed how to add two more spins at each end. Our conjecture is
that it is possible to extend this up to three spins at each end of the standard spin chain.
This conjecture came from the study of the hypergeometric orthogonal polynomials [8].

Appendix. Automorphisms of the quadratic algebra A

In this appendix we discuss the automorphisms of the quadratic algebra .4 given by the
relations (2.7)—(2.9). It is a property of the QISM I algebra (2.1) that any similarity
transformation of a representation 7 (i) is an automorphism of the QISM II algebra, i.e.

T =V TV 7 %))

for any non-degenerate matrix V satisfies the QISM I algebra too. Rewriting the ansatz
(2.3)-(2.5) as

T) =u*Q+ Al + X + %1 (8.2)
where I is the 2 x 2 identity matrix, and
a B Ay Bp
Q= X = A3

it becomes clear that A; and & do not change under the transformation (A.1). We wish to
find a matrix V that leaves «, 8, and ¥ unaltered. This will be so if V commutes with £.
We consider therefore the following choice:

V(6) = exp (% sz) A4)

where A? = det2 = —(a® + B¥). The only part of T'(¢) that is changed is X, according
to the following formula:

X(@)=V(-6)XV(@). {A.5)
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Relation (A.3) defines an automorphism of the quadratic algebra 4, which leaves «, 8, v,
8, and A; fixed. An arbitrary linear combination of Ag, By, and Cy may be achieved by
the following formula:

F =tr(AX) = 2aAo + bBo + cCo (A.6)

a={% ¢ AT
I N (A7),

Substituting X () for X in (A.6) leads to .
F=t{A{8)X) (A.8)

where

where
AB)Y=V(@)AV(-0}. (A9)

This equation thus gives the result of applying the automorphism (A.5) to the linear
combination (A.6). It is not necessary to know the explicit form of this equation, but
rather the two main properties

det A(0) =detA tr{A(0)) = tr(A) . (A.10)

The second relation follows from the fact that V{#) commutes with £2. Letting A(8) = A
we may write the above relations explicitly as

P rbe=F+b  2aa+ b+ ye=2ai+pb+yi. (A.11)

These relations give two equations to determine the new parameters &, b, and & in terms
of the old parameters a, b, and ¢, in agreement with the additional arbitrary parameter 4.
We may thus choose to put any one of the new parameters to zero and thus determine the
values of the remaining two.
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