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New boundary conditions for integrable lattices 
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Received 28 march 1995, in final form 18 May 1995 

Abstract New boundary conditions for classical integrable nonlinear lattices of the XXX type, 
such as the Heisenberg chain and the Toda lattice, are presented. These integrable extensions 
are formulated in terms of a generic XXX Heisenberg magnel interacting with WO additional 
spins at each end of the chain. The consuunion uses the most general rank-l ansaw. for the 
2 x 2 L-operator satisfying the reflection equation algebra with rational r-matrix. The associated 
quadratic algebra is shown to be that of dynamical symmehy for the A I  and BCz Calogem 
Moser problems. Other physical realizations of OUT quadnric algebra are also considered. 

1. Introduction 

Many of the Liouville integrable lattices, for instance the Toda lattice and the Heisenberg 
chain, remain integrable when imposing some boundary conditions other than the open or 
periodic ones. Usually it conesponds to switching from the A,-] classical root system to 
the other ones (B., C,, 0,. BC,, etc) associated with an integrable lattice 11-31. It was 
an idea of Sklyanin [ 11 (see also [41) to describe all such possible boundary conditions in 
terms of the representations of a new algebra 

(1.1) 
which was afterwards called the dect ion equation algebra (see for instance [5]) .  We 
prefer to give it another name the QfSMrf  algebra (see [Z, 6,7, SI), where QIsM stands for the 
quantum inverse scattering method and I1 symbolizes the difference between it and the QrSMI 
algebra, which is simply the familiar algebra given by the quadratic relation [5,9,10, 1.11 

R(u - u)T")(u)R(u + u)T'~'(u)  = T"(u)R(u + t~)T'~'(u)R(u - U) 

~ ~ There are actually too many names for these algebras, and none of them is becoming 
standark that is why we insist on our own choices, the QIsM I and I1 algebras. These names 
are short and also quite characteristic. We should also mention [12] where a different version 
of the reflection equation (1.1) was considered. 

In terms of the integrable models the representations of the QISM I algebra (1.2) provide 
us with integrable lattices (through the co-multiplication) while the representations of the 
QIsM U algebra (1.1) describe the possible boundary conditions for such lattices. In this paper 

3 Supported by the Nederlandse Organisatie voor Welenschappelijk Ondemek W O ) .  
11 On leave of absence from Depamnent of Mathematical and Computational Physics, Institute of Physics, St 
Pefersburg University. SI Pelersburg 198904, Russia. 

0305-4470195/164639+16$19.50 @ 1995 IOP Publishing Ltd 4639 



4640 

we use the new representation of the QISM II algebra found recently in [SI to obtain some 
new boundary terms for the known integrable lattices. These new models are generically 
formulated in terms of the X X X  Heisenberg magnet interacting with two additional spins 
on each end. We also consider the degenerate cases given by the corresponding contraction 
procedure. We would like to stress that our results give for the moment the most general 
boundary terms for the Heisenberg magnet (expressed in terms of two additional spins on 
each end) and specialization will give already known boundary conditions [1,2] coming 
from the scalar or rank-0 solutions of the QISM I1 algebra. Describing the situation in rather 
more technical terms, we can say that we are classifying all boundary conditions coming 
from the most general rank-1 representations of the QrSM 11 algebra in the X X X  case. All 
results in this paper are given for the Poisson algebra. The quantization is straightforward 
and will be published elsewhere. 

2. Rank-1 representations of the QJSM II algebra 

In the classical limit the QlsM I1 algebra (1.1) becomes the following Poisson algebra [I]: 

{T(’)(&), T ( ~ ) ( I J ) ]  = [r(u - U), T ( ’ ) ( ~ ) T ( ~ ) ( U ) ]  + P ) ( u ) r ( u  + U)T(*)(U) 

V B Kuvtetsov et a1 

-T@)(u)r(u + u)T(”(u) (2.1) 
where @ ( U )  = T ( u )  €3 I, T@)(u)  = I 8 T(u).  Here 8 denotes the usual tensor product 
and I is the 2 x 2 identity matrix. The T ( u )  is the 2 x 2 monodromy matrix depending on 
the complex spectral parameter U. The 4 x 4 matrix r(u)  will, in this paper, be given by 

1 0  0 ~ 0  
-1 0 0 1 0  

0 0 0 1  
This is the rational case, which corresponds to the XXX model [3,9], 

r ( u ) =  - U [ 0 1 0 0  1. (2.2) 

Let T ( u )  be of the following form [7,8]: 

(2.3) 

with 
6 

A(u) = (YU’ + Alu + A0 + - (2.4) 

B(u) = flu2 + Bo C ( U )  YU’ + Co. (2.5) 

D(u) = -A(-U) 
U 

Here a, p, y ,  and 8 are scalars, while AI,  Ao, BO, and CO are generators of some algebra. 
The T(u) (2.3)-(2.5) satisfies the following symmetry property: 

T(-u)  - T-’(u). (2.6) 
Inserting this ansatz for T ( u )  into the Poisson algebra (2.1) leads to the following quadratic 
Poisson algebra A for the generators AI,  Ao, BO, and CO: 

IAo, A I ]  = PCO -  BO (2.7) 

{ B o , A I ) = Z ( Y B O - ~ ~ ~ A O  (Co,Ao]= -2A1Co+Zys (2.8) 

{CO, A i )  = 2yAo - 2 d 0  (2.9) 

{Bo, AoJ = 2AiBo - 286 

(CO, Bo] = 4AiAo - 4 ~ 8 .  
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The determinant of the monodromy matrix T ( u )  is the generating function for the centre of 
the QISM I1 algebra (2.1). For the ansatz (2.4 j(2.5) 

(2.10) detT(u)=-(or2+py)u4+G?2u2+Q+;;Z 62 

with 

Q 2 = A ~ - 2 0 1 A o - @ C o - y B o  & o = 2 8 A 1 - A : -  BoCo. (2.11) 

Hence (2.1 1) gives two Casimir elements for the algebra (2.7 j(2.9). Notice here that we 
term the ansatz (2.4H2.5) the ‘rank-1 representation’, since we have got the Poisson algebra 
(2.7 j(2.9) with six generators out of it, which has two Casimir elements. So the rank of 
the algebra is equal to 1. If one takes higher order polynomials in the expressions for A(u),  
B(u) ,  C(u), D(u),  then one arrives at the Poisson algebras of a higher rank. 

The QlsM II algebra (2.1) withthe r-matrix (2.2) admits the following scalar solution [I, 
21: 

- a + d f u  
a + d / u  K ( u )  = (2.12) 

where a ,  b, c, and d are complex constants. This is just a special case of (2.3X2.5) with 
01 = @ = y = A ]  = 0. Then Ao, Bo, and CO all commute. We may now combine the two 
solutions K ( u )  and T ( u )  of the QisM II algebra and define 

t (u)  = t r K ’ ( - u ) T ( u ) .  (2.13) 

Note that 2 : T ( u )  H TI(-U) is an automorphism of the algebra (2.1) with the r-matrix 
(2.2). It is a property of the QlsM II algebra [I] that 

M U ) ,  t ( V ) l  = 0 .  (2.14) 

Hence the t (u )  (2.13) is the generating function for the integrals of motion of an associated 
integrable system. For our special choices of K ( u )  and T(u)  we get 

s 
t (u )  = ( h a  + @b + yc)u2 + H - 2d- 

U 2  
(2.15) 

where 

H = h A o +  bBo + d o  - 2 d A i .  (2.16) 

The Hamiltonian (2.16) defines a completely integrable system, since it is effectively one 
dimensional. (Subtract two centre elements (2.1 1) from four generators and divide by two 
to see that the algebra (2.7H2.9) is of one degree of freedom.) In the appendix we show 
how we may eliminate the first term in the Hamiltonian (2.16) by using the automorphisms 
of the quadratic algebra A. The result is 

(2.17) H = LBO +;CO - 2dA1 

where the new coefficients 6 and Z are related to a, b, and c through 

a2 + b c  = % h a  +pb+ y c  = p i  + y Z .  (2.18) 

Any Hamiltonian that is a function of A I ,  Ao, BO, and CO will be completely integrable. 
However, for this special case, an arbitrary linear combination, we have formulated the 
problem using the QlsM I1 algebra. It is then possible to apply the method of separation 
of variables, which will be shown in section 4. We now give a physical realization of the 
quadratic algebra (2.7)-(2.9). 
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3. The o(4) generalized Lagrange top 

The algebra (2.7)-(2.9) may be embedded into the U(o(4)) Lie algebra with the six 
generators Ji and x i ,  i = 1,2,3, and the Poisson brackets 

V B Kumetsov et al 

[Ji, Ji} 6ijrJk I J i ,  x;I = 6 i ; r ~ r  Ixi.~jI 6ijrJr. (3.1) 

C I = X ~ + J ~  c 2 ~ x - J .  (3.2) 
The homomorphism between the U(o(4)) algebra with relations (3.1) and the rank-1 QISMII 
algebra (2.7)-(2.9) is given by the following formulae [SI: 

The U(O(4)) algebra has the two Casimir elements 

(3.3) 
where the scalars a, p, and y appearing in (2.4)-(2.5) are without loss of generality chosen 
to be 

2 2  A0 = X ~ J Z  -x2Jj Bo = -xl - x2 - 532 CO = J 2  Ai =x3 

u = o  p = - 1  y = l  ~~ (3 a )  

6 = C2J3. (3.5) 

with 6 being equal to 

Using equations (2.10), (2.11) we may write the centre of the algebra in terms of the o(4) 
variables 

80 =e +CIJ? 8 2  = CI + J:. (3.6) 
Notice that from this it follows that J3 commutes with all of A I ,  Ao, BO, and CO. It is 
a simple matter to verify equations (2.7H2.9) from the definitions (3.3) and (3.1). The 
integrable Hamiltonian (2.17) becomes 

H =  - 6 Q 2 + ( 6 f Z ) J 2 + 6 x $ - 2 d x 3  (3.7) 
with J3 as the additional conserved quantity. For the particular values of a, p ,  and y in (3.4) 
it can be shown that 6 and i; are always real when a, b, and c are. The Hamiltonian (3.7) 
corresponds to an o(4) generalized Lagrange top [3]. 

In the special case uz + py = 0, the algebra A is degenerate. We then have the 
following homomorphism to U(e(3)) [SI: 

A0 = X I  52 - X Z J I  Bo = -xf -x :  CO = J 2  A I  =x3 (3.8) 
where we have put without loss of generality that 01 = p = 0 and y = 1 with 6 being as 
in (3.5). The algebra generators J, and xi satisfy here the Poisson brackets like in (3.1) 
where the last bracket is equal zero (according to the contraction procedure from o(4) to 
e(3)). The first Casimir element CI = x2. The Hamiltonian (3.7) for this case corresponds 
to the Lagrange top in a nonlinear gravity field [3]. 

4. Separation of variables 

We now return to the Hamiltonian (2.16) with the Poisson brackets (2.7H2.9) and show how 
this system may be integrated by the general method of separation of variables applicable 
to the QISM II algebra. This method was first applied by Sklyanin in [ l l ,  131 to the 
representations of the QISM I algebra. See also [2,6] where the separation of variables 
was applied for the first time to the QISM 11 algebra under circumstances close to the oneS 
we have in the present paper. 
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To do this it is necessary first to apply a similarity transformation to the matrices K ( u )  
and T(u)  in order to make K ( u )  triangular. We define the matrix V as 

where a and b are the parameters in K ( u )  defined by (2.12) and wz = a' + bc. Then we 
introduce t ( u )  and ? ( U )  as 

%(U) = V'K(u)(V-')' ? ( U )  = V-'T(u)V = (4.2) C ( U )  -A(-U) 

The matrices b ( u )  and ? ( U )  are of the same form as K ( u )  and T(u),  respectively. The 
% ( U )  now looks like 

d 
W f -  L i + -  s 

(4.3) 

while we have the following relations between the entries of T(u)  and ?(U): 

7 = -2ba - - Bb2 + ( a + w ) y  Bb p = -  - B  i u = c u + -  
a + w  a.+ w a + w  

and 
2b& - bZ$ + eo 

AO = .io - b$ BO = (a + w)$ CO = ~ a + ~ w  

(4.4) 

(4.5) 

where A1 and 6 are not changed. Since det?(u) = detT(u) we have !& = QZ and 
= 00. Furthermore, b ( u )  and f ( u )  also satisfy the QISM 11 algebra, while ? ( U )  defined 

in (2.13) is unaltered. Hence, these matrices generate the same integrable system as before. 
It is because of the triangular form of % ( U )  that we get 

. .  
NOW let u1 be a zero of e(,), i.e. 

Qu,) = 0 (4.7) 

A: = - X ( - U I )  A; = d ( u 1 ) .  (4.8) 

(4.9) 

and define 

We may easily evaluate 

hTh; = -&ul)&-uI) = detf(u1) = A(u1) 

where A(u)  = det T ( u )  is given by (2.10), and from (4.6) we get 

(4.10) 

This is simply the separation equation for the separation variables U], A:. Because ?(U) 
satisfies the QIsM I1 algebra we have the important Poisson brackets between the new 
variables U, and h: (see [2,6]) 

( ~ i , A f }  =&A: (AT, A;] = -A'(ui) .  (4.11) 

d 
U1 

t(u1) = w(A; - A!) - -(A; + A T ) .  
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From (4.9) and (4.11) it follows that we may put 

A: = m e*P1 

Inserting (4.12) into (4.10) and using (2.15) gives 

{U,, PI]  = 1 . (4.12) 

(4.13) 
d 8 
U1 

H = - 2 m  ( w  sinh p1+ -cosh p , )  - (2aa + pb + yc) a: + 2d3 . 

We have thus formulated the problem as an one-dimensional system with the 
Hamiltonian (4.13) in terms of the canonical coordinates u1 and PI. The equation of 
motion looks like 

4 = I U l ,  (4.14) 

from which we have 

(i1)’ = t(U1)’ -4A(ul) (4.15) 

After the substitution VI = U: the problem can be integrated in terms of elliptic functions. 
The transformation from (AI, Ao. BO, CO) to (UI, PI)  is given by equations (2.16), (4.7), 
and (4.13). To get back we first write .&U) and ?(a) in t e n s  of u1 and p1 through the 
Lagrange interpolation using the data 

?(&U,) = 0 A(iu1)  = &Ay (4.16) 

and the leading parameters E, ), 7, and 8. This gives 

C ( U )  = ? ( U 2  - U:) (4.17) 

(4.18) 
a u ; - u 2  u - u 1 +  A, +*A;. 

A(u) = h(U2 - U:) + -- + - 
U a : ~  2Ul 2Ul 

Equating powers of U and using (4.12) then gives 

Lo = -Ea: - m s i n h p l  AI 5 -- + __ mcoshpl(4.19) - 2  eo = - ya,  
U: 111 

To get Bo we insert d(u)  = sa’ + & into -Z(U)&-U) - d(u)e(u)  = A(u) and equate 
powers of U. This gives 

(4.20) 

Alternatively, i’o may be restored from the Poisson bracket 

{ i o ,  A ! }  = 8 4  - FEo.- (4.21) 

We may finally get AI,  Ao, Bo, and CO in terms of U,. PI. ‘20, and Q 2  by using (4.5). 
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5. Two interacting o(4) fops 

We now generalize the results of sections 2 and 3 to the case of not just one, but two o(4) 
Gagrange tops interacting with each other. This is done by replacing in (2.13) K ( u )  with 
T(u) ,  where F ( u )  is of the same form as T(u) ,  but with a different choice of &, ,!?, y ,  I, 
AI ,  20, 20, and 20. Because the QISM I1 algebra (21) is closed under the action of any 
similarity transformation, we may write t ( u )  as 

t (u)  = t r f ' ( - u ) v ~ ( u ) v - '  (5.1) 

where V is any matrix with determinant 1, while T ( u )  is given by (2.3H2.5) and (3.3)43.5) 
and similarly for F(u). Putting 

v = ( :  :) 
with ad - bc = 1 leads to the following integrable system: 

288 
I(U) = (a2 + b2 + c2 + d2)u4 - Hu2 - G - - (5.3) 

U2 

where 

H = -2(ab + d ) A o  + (a2 + - (b2 + d2)Co 

- 2 ( a c + b d ) i o +  ( a 2 + b 2 ) $ - ( ~ 2 + d 2 ) L 6 + 2 A ~ A i  (5.4) 

+bZCo$ + C ' B O ~ O  - 2d(bCo& + cAoeo) + 2(Sdi+ I A i ) .  

G = -2(1+ 2bc)AoAo - - a  2 -  BoBo -,d2C@o + k ( ~ B o A o  + bAo&) 

(5.5) 
If we regard the H (5.4) as the Hamiltonian then we see that the interaction between the 
two systems is through the term AI A l .  We may use the automorphisms of the quadratic 
algebra A to eliminate the terms in H with A0 and &. Using equations (2.18) we get the 
following Hamiltonian: 

H = A ( C ~ - ~ O ) + L - ' ( ~ ~ - B ~ ) + ~ A ~ A I  (5.6) 
where A is the single non-trivial parameter in the Hamiltonian satisfying -(A + A-') '= 
a2 + b2 + c2 + dz. The second conserved quantity is 

G = 2(AoA"o + 8 i l  +;AI) - ACo& - A-'B&. (5.7) 
Applying the homomorphism (3.3) gives the final result: 

H = J + Z 2  + ( 1 3  cosh 0 + 23 sinh.9)' . (5.8) 
Here A = tanh.9, while constant additive terms and multiplicative factors have been 
neglected. This is a new integrable system which we call hvo interacting 4 4 )  Lagrunge 
rops. We remark that the number of degrees of freedom is 4 and there are two simple 
integrals, namely: J3 and 1 3 .  The fourth integral G (5.7) is of degree 4 in the Ji and x i .  
No separation of variables is known for this system or in general for any integrable system 
given by (5.1) in the case when both T ( u )  and f ( u )  are non-scalar. 

The Hamiltonian (5.8) contains interesting subcases. We may easily change the real 
form speaking about two interacting systems on the algebras, for instance, 0(2,2) @0(2,2), 
o(3.1) @ o(4) and so on. The further possibility is the contraction giving the cases like: 
e(3) @ 0(4), e(3) C3 0 6  I), e(3) C3 e(3) etc. Finally, the two O(4) algebras have two o(3) 
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subalgebras by putting ( x i .  Jz, x3) = (SI. sz. $3) and similarly (,?I, &,&) = ( tz ,  -ti, t 3 ) .  
Then 

(5.9) 

(5.10) 

This is a special @ut non-trivial, one-parameter) case of the general (two parameter) o(4) 
Manakov top [2,3]. 

V B Kuznetsov et a1 

H = h(s: + t:) + A-'@: + t:) + 2s3t3 

G = X-'(slt l  - hqtz)'. 

6. Further realizations 

In this section we consider other homomorphisms of the specialized quadratic algebra A 
determined by the condition c?+oy =~O. Without loss of generality we may put 01 = @ = 0 
and y = 1. Applying the techniques of the section 5 leads to the following system: 

with the single parameter A. We have the following homomorphism of the specialized 
algebra A into U(sl(2) CB sl(2)): 

Ao = 4(~3t -  - t 3 ~ )  Bo = -16t-S- (6.3) 

CO = (s+ + t + ) ( ~ -  + t-) - ( ~ 3  + t3)' (6.4) 

s = 2 ( S -  + t-)(Cs - C,) . (6.5) 

Ai = 2(t- - S-) 

Here C, and C, are the Casimir elements of  the two sl(2) algebras 

(6.6) 2 2 = s3 - s+s- c, = t3 - tit- 

and the Poisson brackets for the generators are given by 

(s-, s3} = S- (s-, s+] = 2 s 3  (S3, s+} = s+ (6.7) 

It-, t 3 )  = I- It-, t+} = 2t3,  If3, t+ l=  t+ .  (6.8) 

We may realize the pair of sl(2) algebras in tems of the canonical variables ( x ,  y, p x ,  p y )  
via the following homomorphism ((x. p x }  = 1 etc): 

(6.9) 

(6.10) 

where 1 and m are the values of 
gives the following Hamiltonian: 

and C,, respctively. Inserting these relations in (6.1) 

H = i( x p y  - YP*Y + ;c.i.py - ?p*Y + 2h(xZ - y2)(,?' - ?Z) 

(6.11) 
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= ?sin6 this system becomes In polar coordinates x = r cos@, y = r sine, f = icos8,  

+ 2 ~ r ~ i 2  ((n - I )  cos 2ti + (k - i) cos ie) . (6.13) 

Regarding H ,  equation (6.12) as the Hamiltonian, we can see that we have a system of two 
particles situated in some singular field and interacting with each other through the product 
of cosines. This can be interpreted as two interacting pendulas. This is a new integrable 
system. The r2 and i are constants, being the level values of two simple integrals: s- + t -  
and S + F-. The fourth integral C, equation (6.13), is of degree 4 in terms of 6 and 8. We 
would like to call this system the D2 To& lattice with singular terms. Without the singular 
terms the system is easily integrated by introducing e* = e&;. However, no integration of 
the general system is yet known. In what follows we will give two more physical examples 
connected with some realizations of the specialized algebra A: namely, the so-called A I  
and BC2 rational Calogero-Moser systems [14]. 

The A I  rational Calogero-Moser system is given by the Hamiltonian 

(6.14) 

with the additional conserved quantity P = p1 + p2. Introduce three more variables 

R = X I + X Z  H o = ~ ( P I x I + ~ ~ x ~ )  H+= ~ ( x : + x , ’ ) .  (6.15) 

We now have the following realization of the specialized algebra A: 

AD = 4(PHo - R H )  Bo 4(Pz - 4 H )  ~ CO = 4(HH+ - Hi) (6.16) 

A i = 2 P  S = O  (6.17) 

again with a = ,3 = 0 and y = 1. Since ‘22 = 16H, H commutes with all of Ao, 
BO, CO, and A I .  This observation corresponds to the fact that the Hamiltonian (6.14) is 
superintegrable [ I S ] .  

Inserting this realization in the Hamiltonian (6.1) for two ‘interacting A I  Calogero- 
Moser systems’ leads to the following integrable system: 

(6.18) 

By the construction of this system, we know that its motion on the levels of two Hamiltonians 
for two A I  Calogero-Moser systems is equivalent to that of the system (6.12) (because both 
systems give two different realizations of the same specialized algebra A). 
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Consider finally the following oneparameter case of the BC2 rational Caloger*Moser 
system given by the Hamiltonian: 

where K is a constant. This system may be embedded into the specialized algebra A in the 
following manner: 

2 (6.20) 

A0 = ( N ,  CO} AI = -2(N - 3H2) S = (K' - l )HZ (6.21) 

where HO and H+ are given by (6.15) and N is the so-called second conserved quantity 1141 

1 CO = a(HH+ - Ho) Bo 4 ( N  - 4 H 2 ) ( N  - 2H2)  

(W, NI = 0) 

(6.22) 

Because the Hamiltonian H is sitting in 6 it commutes with all the generators and hence the 
system (6.19) is superintegrable too. In this case the Hamiltonian (6.1) for 'two interacting 
BCz CalogereMoser systems' has the following form: 

H = (xrpz - x z P l ) 2  + (W -fzF,P + 2 ( X :  + X W ( X l ,  X 2 , K )  

+ z ( f : + f ; ) v ( ~ , . f 2 , a ) + l ( N - 3 3 H Z ) ( ~ - 3 3 E i 2 )  (6.23) 

where 

It is quite interesting to remark that the motion given by the Hamiltonian (6.23) on the fixed 
levels of two integrals of motion (6.19) (one with tilde and one without tilde) is the same 
as the motion given by the Hamiltonian of the DZ Toda lattice (6.12). The last two results 
regarding the Calogero-Moser systems were obtained by one of us in [16]. 

7. Two e(3) tops interacting with the A, Toda lattice 

The next generalization we present is that of inserting the Toda lattice between the two e(3) 
Lagrange tops (see end of section 3). This is done by using the monodromy matrix for the 
Toda lattice 

(7.1) L(u)  = L z ( u ) .  . . L N - ] ( U )  

where 

The matrix L(u)  (7.1) satisfies the Poisson limit of the QISM I algebra [9,13] 

(L'l'(u), L"(u)] = [r(u - U). L'"(U)L'Z'(V)] (7.3) 
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with the same r-matrix (2.2) as in (2.1). Now let c ( u )  and TN(u) be the representations 
described in (3.8). It is then true that the matrix 

T ( u )  = L(U)T, (U)L-] ( -U)  (7.4) 

$ ( U )  = tr I;'(--U)L(U)TN(u)L-'(-U) (7.5) 

also satisfies the QISM 11 algebra (2.1) [I]. Therefore the trace 

is a generating function for the integrals of motion for the A,-' Toda lattice interacting 
with an e(3) Lagrange top at each end. The Hamiltonian for this system is as follows: 

The first three terms describe the kinetic energy of the system, which is a chain of particles 
plus two tops at the ends of the chain. The last three terms are the potentials, the first one 
being in the form of Toda-like interaction between the neighbours in the chain while the 
two last terms describe an interaction of the tops with the chain. It is convenient to choose 
the following representation of the specialized quadratic algebra A. Let o( = j3 = 0 and 
y = - 1. Then (cf also r2.61) 

A I  =coshq Ao=psinhq BO=-sinh'q (7.7) 

where C I  and cz are arbitrary constants. The Hamiltonian (7.6) then becomes 

c4 

sinh' f cosh' f sinh' cosh' 
c3 +- +- cl +-+- c2 

(7.9) 

(7.10) 

This Hamiltonian was proved to be integrable for the first time in [17]. It corresponds to 
the most general Toda lattice of the type D,  with four additional singular terms. Now we 
have given another proof for its integrability and also shown how it appears naturally from 
the combination of the standard A,-' Toda lattice with two tops each interacting with the 
corresponding edge particle of the An-' Toda lattice. 

8. ' b o  o(4) tops interacting with the Heisenberg magnet 

Let us consider the XXX Heisenberg magnet. It is given by the following construction. 
First, we introduce a chain of simple L-operators [9] (k = 1, . . . , N) 

each of which satisfies the QISM I r-matrix algebra (T(u)  = &(U)) with the r-matrix (2.2) 

(8.2) 
where the s-variables have the following Poisson brackets of the sl(2) Lie algebra for any 
k: 

{T( ' ) (u) ,  T@)(v) ]  = [r(u - U), T'"(u)T"'(v)] 

{s3, si} = &is* IS+, s-} = 22. (8.3) 
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We will also use the real variables s i  and S: defined as S; = si Tis,'. The L-operators (8.1) 
have the following properties when conjugate and change the sign of the spectral parameter 

V B Kuznersov et a1 

U: 
- 

L J - U )  = L L ( U )  &(U) = u2Lr(u)u2 U E I[$. (8.4) 

The L-operators (8.1) can be also represented in the form of the scalar product between 
two vectors: 

(8.5) I 2 3  1 

U 
L k ( u ) = l + - ( s k , u )  sr=(sk.sk.sJ 

where U = ( U ! ,  UT, oj) are the standard Pauli matrices. 

sl(2) algebras: 
The determinants of the L-operators are expressed through the Casimir elements of the 

and have fick as degeneration points. The monodromy matrix T(u)  = L N ( u ) .  . . Ll(u) 
satisfies the algebra (8.2) too, while its trace 

t (u )  = t rT(u)  I f @ ) ,  t ( u ) ]  = 0 

provides us with the complete set of the integrals of motion in involution for the XXX 
Heisenberg magnet. There is a well known rule [9] for writing down the local Hamiltonian 
for the model. Suppose that we have the homogeneous chain, i.e. all CK are equal, ck = c. 
Then one should calculate the logarithm of the generating function r (u)  at the common 
degenerate point of all the L-operators, i.e. U = ic in our case. So, the local Hamiltonian 
for the XXX Heisenberg chain looks like: 

(8.7) 

Let us now proceed further to introducing the boundary conditions for the chain with the 
Hamiltonian (8.7). First, we pick up a special representation of the QlsM 11 algebra which 
was introduced in sections 2 and 3. Suppose we have the Lie algebra so(3) eso(2, 1) given 
by the following Poisson brackets for its six generators s~ and t k :  

(Si I sj1 = EijkSk (8.8) 

( f l .  tzl = -r3 Itz. t31 = t I  It3, tll = t 2 .  (8.9) 

The Casimu elements are 

= ( S l y  + (s2)Z + ($312 = s2 e* = -(t# - ( t2 )2  + ( t3)2 = t 2 .  (8.10) 

The following matrix: 

(8.11) 

Y 

u(s3 -t3) +2ihtz-ssztd i(u2+s2+r2+2s3b 

-2i(s1t1 + sztz)) 

i(u2 + s2 + t2 + 2s3t3 
+2i(nrl + szrz)) 

u(s3 - t3) - 2i(slt2 - s2tl) 
+ (,n+t%)(*2-,2) 

T ( u )  = 

gives a representation of the QISM II algebra (2.1). 
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Let us take the same representation with the tilde-variables & and & which are in direct 
sum to the spins s and t: 

[k, S j ]  = E& (8.12) 

[i2,T3]=?, [ ? 3 , T 1 } = T 2 .  (8.13) 

The Casimir elements are 

(8.14) 2 - - 2  f -  ( - 2  - 2 - 2  E, = (SIY + ( i d 2  + (h )~  - s f - - ti) - (?,I2 + 0 3 )  - t . 

i(u2 + ~2 + t? + ZS,?, 

-2i(il?l + $2)) 

The following matrix ? ( U ) :  

(8.15) 

U ( &  - &) + ~ i ( 9  Iz - SzTI) 

i(u2 + s2 + i2 + 2&?3 U(& - t3) - 2i(Sliz -~!&) 
+ (3,+h)(i2-P) 

gives a representation of the QISM It algebra (2.1). 

boundary terms looks like 
The generating function for the integrals of motion for the XXX Heisenberg chain with 

t ( U )  ~ ' ? ( U ) L N ( U )  ' .. Ll(U)T(U)Li(U). ' . L N ( U ) .  (8.16) 

The local Hamiltonian for the system has the following form: 

1 H,,, = logt(ic) = 
k=l 

+ 10g[C2(S3 - t 3 )  - (S3 + t 3 ) ( S 2  - r2) + Si (-C2, f S2 + t2 f 2S3t3)  

+2S:(Slfl + S 2 t d  + 2+,tZ - S Z t I ) ]  

+ I O ~ [ C ~ ( S ~  - t3) - (4 + i3)(? - i2) + s;(-c2 + S? + i2 + 2;&) 

+2S:(sltl + SZ?d + 2S,(Slt2 3 - -  - 4 i l ) l  +log (2). (8.17) 

This integrable Hamiltonian describes the XXX Heisenberg chain interacting with two spins 
s and t at the one end of the chain and with two spins J. and at the other one. Note that in 
order to get the Hermitian Hamiltonians we had to choose the non-compact so(2, 1 )  form 
of the spins t and E. The boundw terms in the Hamiltonian (8.17) generalize the ones 
in [181, which described the influence of the external magnetic field and, in quantum case, 
looked like (formula (53) in [IS]) 

H = ~ ( U ~ U ~ + ~  + m,Yu;+, + U~U:+~) + b-of - b+u$ + c-U; - c+ui 
N-1  

n=l 

+d-u: - d+u; (8.18) 

where bi, ci, and d+ are constants. The Hamiltonian similar to (8.18), with six boundary 
terms, was proved recently to be integrable also for the generalization up to the X Y Z  
case [19]. 
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9. Discussion 

It is well known (after the original work of Sklyanin [I]) that every new representation of 
the reflection equation algebra, or the gIsM 11 algebra in our terms, provides one with some 
new integrable system which can be interpreted as a system described by the QIsM I algebra 
with some boundary terms added. 

In this paper we constructed several new integrable systems which appear after imposing 
boundary conditions on the known integrable lattices. We obtained the following results: 
(i) two interacting o(4) tops; (ii) a new interpretation. of the most general Toda lattice of 
the DN type (namely, 'DN = AN + 2 tops'); (iii) the quadratic algebra A as a dynamical 
algebra of hidden symmetries for the A I  and BCZ Calogerc-Moser problems: (iv) the 
explicit form of the 'local' Hamiltonian (8.17) for the system which describes an interaction 
of the X X X  Heisenberg chain with two o(4, C) tops. 

We believe that it is possible to generalize our results in some ways: first, the 
quantization which seems quite straightforward, and second, the q-deformation. There 
is also an open problem of whether to integrate new systems or to separate variables for 
them. 

It is also very interesting to understand how many spins can be added to the Heisenberg 
chain as some sort of boundary conditons, while still preserving the integrability property. 
In the present paper we showed how to add two more spins at each end. Our conjecture is 
that it is possible to extend this up to three spins at each end of the standard spin chain. 
This conjecture came from the study of the hypergeometric orthogonal polynomials 181. 
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Appendix. Automorphism of the quadratic algebra A 

In this appendix we discuss the automorphisms of the quadratic algebra A given by the 
relations (2.7)-(2.9). It is a property of the QISM I1 algebra (2.1) that any similarity 
transformation of a representation T(u)  is an automorphism of the QISM I1 algebra, i.e. 

?(U) = V-'T(u)V (-4.1) 

for any non-degenerate matrix V satisfies the QISM 11 algebra too. Rewriting the ansatz 
(2.3)-(2.5) as 

T ( U ) = U ~ ~ + A ~ U I + X + - I  U (A.2) 
6 

where I is the 2 x 2 identity matrix, and 

it becomes clear that A I  and 6 do not change under the transformation (A.1). We wish to 
find a matrix V that leaves a, 6 ,  and y unaltered. This will be so if V commutes with a. 
We consider therefore the following choice: 

where Az = det 
to the following formula: 

= -(az + f ly) .  The only pari of T(u)  that is changed is X ,  according 

x(e)  = v ( - e ) x v ( e ) .  (A.5) 
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Relation (AS) defines an automorphism of the quadratic algebra A, which leaves a, p ,  y ,  
6, and A1 fixed. An arbitrary linear combination of AD, Bo, and CO may be achieved by 
the following formula: 

F = @(AX) 2eAo  + bBo + CCO (A.6) 

where 

A = ( "  b -a " )  
Substituting X(0) for X in (A.6) leads to 

F = tr(A(B)X) 

where 
A(0) = V(e)AV(-e). 

This equation thus gives the result of applying the automorphism (A.5) to the linear 
combination (A.6). It is not necessary to know the explicit form of this equation, but 
rather the two main properties 

detA(0) = detA tr(A(0)n) = tr(AS2). (A.lO) 

The second relation follows from the fact that V(0) commutes with 0. Letting A(0) = 
we may write the above relations explicitly as 

a 2 + b c = Z 2 f 6 E  2cra+pb+ y c = Z c ~ r l r i + ~ +  yE. (A. 11) 

These relations give two equations to determine the new parameters rl, 6,  and E in terms 
of the old parameters a. b,  and c,  in agreement with the additional arbitrary parameter 0. 
We may thus choose to put any one of the new parameters to zero and thus determine the 
values of the remaining two. 
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